Syllabus

Unit-I

UV Visible Spectroscopy

Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations.

Instrumentation: Sources of radiation, wavelength selectors, sample cells, detectors- Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode.

Applications: Spectrophotometric titrations, Single component and multi component analysis

Fluorimetry

Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications.

Unit-II

IR Spectroscopy

Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations.

Instrumentation: Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications.

Flame Photometry: Principle, interferences, instrumentation and applications.

Atomic Absorption Spectroscopy: Principle, interferences, instrumentation and applications

Nepheloturbidometry: Principle, instrumentation and applications.

Unit-III

Introduction to Chromatography

Adsorption and Partition Column Chromatography: Methodology, advantages, disadvantages and applications.

Thin Layer Chromatography: Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.

Paper Chromatography: Introduction, methodology, development techniques, advantages, disadvantages and applications.

Electrophoresis: Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications.

Unit-IV

Gas Chromatography: Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications.

High Performance Liquid Chromatography (HPLC): Introduction, theory, instrumentation, advantages and applications.

Unit-V

Ion Exchange Chromatography: Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications.

Gel Chromatography: Introduction, theory, instrumentation and applications.

Affinity Chromatography: Introduction, theory, instrumentation and applications.

Contents

	Preface	vii
	Acknowledgement	ix
	Syllabus	xi
Un	it-I	
1.	UV Visible Spectroscopy	3
2.	Fluorimetry	26
Un	it-II	
3.	IR Spectroscopy	41
4.	Flame Photometry	55
5.	Atomic Absorption Spectroscopy	60
6.	Nepheloturbidometry	65
Un	it-III	
7.	Introduction to Chromatography, Adsorption and	
	Partition Column Chromatography	71
8.	Thin-Layer Chromatography	79
9.	Paper Chromatography	83
10.	Electrophoresis	91
Un	it-IV	
11.	Gas Chromatography	105
12.	High Performance Liquid Chromatography (HPLC)	116

Unit-V

13.	Ion-Exchange Chromatography	123
14.	Gel Chromatography	132
15.	Affinity Chromatography	138